A Driving-Style-Adaptive Framework for Vehicle Trajectory Prediction

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Trajectory prediction, driver style category, Kolmogorov-Arnold Networks, model explanation, basis function, Weierstrass Approximation Theorem
Abstract: Vehicle trajectory prediction serves as a critical enabler for autonomous navigation and intelligent transportation systems. While existing approaches predominantly focus on temporal pattern extraction and vehicle-environment interaction modeling, they exhibit a fundamental limitation in addressing trajectory heterogeneity originating from human driving styles. This oversight constrains prediction reliability in complex real-world scenarios. To bridge this gap, we propose the Driving-Style-Adaptive (\underline{\textbf{DSA}}) framework, which establishes the first systematic integration of heterogeneous driving behaviors into trajectory prediction models. Specifically, our framework employs a set of basis functions tailored to each driving style to approximate the trajectory patterns. By dynamically combining and adaptively adjusting the degree of these basis functions, DSA not only enhances prediction accuracy but also provides \textbf{explanations} insights into the prediction process. Extensive experiments on public real-world datasets demonstrate that the DSA framework outperforms state-of-the-art methods.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 2364
Loading