Auditing $f$-Differential Privacy in One Run

ICLR 2025 Conference Submission12235 Authors

27 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Differential privacy, Auditing privacy
TL;DR: We use trade-off functions to perform tighter auditing of algorithms designed to satisfy differential privacy in a single run.
Abstract: Empirical auditing has emerged as a means of catching some of the flaws in the implementation of privacy-preserving algorithms. Existing auditing mechanisms, however, are either computationally inefficient -- requiring multiple runs of the machine learning algorithms —- or suboptimal in calculating an empirical privacy. In this work, we present a tight and efficient auditing procedure and analysis that can effectively assess the privacy of mechanisms. Our approach is efficient; similar to the recent work of Steinke, Nasr, and Jagielski (2023), our auditing procedure leverages the randomness of examples in the input dataset and requires only a single (training) run of the target mechanism. And it is more accurate; we provide a novel analysis that enables us to achieve tight empirical privacy estimates by using the hypothesized $f$-DP curve of the mechanism, which provides a more accurate measure of privacy than the traditional $\epsilon,\delta$ differential privacy parameters. We use our auditing procure and analysis to obtain empirical privacy, demonstrating that our auditing procedure delivers tighter privacy estimates.
Supplementary Material: pdf
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12235
Loading