The Graph Learning Attention Mechanism: Learnable Sparsification Without HeuristicsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: graph structure learning, graph attention networks
TL;DR: We introduce a drop-in, differentiable graph structure learning layer for use with GNNs.
Abstract: Graph Neural Networks (GNNs) are local aggregators that derive their expressive power from their sensitivity to network structure. However, this sensitivity comes at a cost: noisy edges degrade performance. In response, many GNNs include edge-weighting mechanisms that scale the contribution of each edge in the aggregation step. However, to account for neighborhoods of varying size, node-embedding mechanisms must normalize these edge-weights across each neighborhood. As such, the impact of noisy edges cannot be eliminated without removing those edges altogether. Motivated by this issue, we introduce the Graph Learning Attention Mechanism (GLAM): a drop-in, differentiable structure learning layer for GNNs that separates the distinct tasks of structure learning and node embedding. In contrast to existing graph learning approaches, GLAM does not require the addition of exogenous structural regularizers or edge-selection heuristics to learn optimal graph structures. In experiments on citation and co-purchase datasets, we demonstrate that our approach can match state of the art semi-supervised node classification accuracies while inducing an order of magnitude greater sparsity than existing graph learning methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
9 Replies

Loading