Keywords: Catastrophic Forgetting, Class-Incremental Learning, Continual Learning, Task Confusion.
TL;DR: A memory-efficient architecture for incremental learning based on model-based and exemplar-based approach.
Abstract: In class-incremental learning (CIL), effective incremental learning strategies are essential to mitigate task confusion and catastrophic forgetting, especially as the number of tasks $t$ increases. Current exemplar replay strategies impose $\mathcal{O}(t)$ memory/compute complexities. We propose an autoencoder-based hybrid replay (AHR) strategy that leverages our new hybrid autoencoder (HAE) to function as a compressor to alleviate the requirement for large memory, achieving $\mathcal{O}(0.1 t)$ at the worst case with the computing complexity of $\mathcal{O}(t)$ while accomplishing state-of-the-art performance. The decoder later recovers the exemplar data stored in the latent space, rather than in raw format. Additionally, HAE is designed for both discriminative and generative modeling, enabling classification and replay capabilities, respectively. HAE adopts the charged particle system energy minimization equations and repulsive force algorithm for the incremental embedding and distribution of new class centroids in its latent space. Our results demonstrate that AHR consistently outperforms recent baselines across multiple benchmarks while operating with the same memory/compute budgets.
Supplementary Material: zip
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2656
Loading