Keywords: Public Health Impact, Electricity Generation, Health-informed Computing
TL;DR: We build a domain-specific AI model to predict health impacts of electricity usage.
Abstract: The electric power sector is a leading source of air pollutant emissions, impacting the public health of nearly every community. Although regulatory measures have reduced air pollutants, fossil fuels remain a significant component of the energy supply, highlighting the need for more advanced demand-side approaches to reduce the public health impacts. To enable health-informed demand-side management, we introduce $\texttt{HealthPredictor}$, a domain-specific AI model that provides an end-to-end pipeline linking electricity use to public health outcomes. The model comprises three components: a fuel mix predictor that estimates the contribution of different generation sources, an air quality converter that models pollutant emissions and atmospheric dispersion, and a health impact assessor that translates resulting pollutant changes into monetized health damages. Across multiple regions in the United States, our health-driven optimization framework yields substantially lower prediction errors in terms of public health impacts than fuel mix-driven baselines. A case study on electric vehicle charging schedules illustrates the public health gains enabled by our method and the actionable guidance it can offer for health-informed energy management. Overall, this work shows how AI models can be explicitly designed to enable health-informed energy management for advancing public health and broader societal well-being. Our datasets and code are released at: <https://github.com/Ren-Research/Health-Impact-Predictor>.
Submission Number: 125
Loading