FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models

13 Sept 2024 (modified: 18 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Federated Learning, Compression, Sparsity, Quantization, Communication Efficiency, Local Training
TL;DR: FedComLoc is a novel FL algorithm that significantly reduces communication costs by incorporating compression techniques into efficient local training, validated by thorough experiments.
Abstract: Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server, while being respectful of privacy. A critical bottleneck in FL is the communication cost. A pivotal strategy to mitigate this burden is Local Training, which involves running multiple local stochastic gradient descent iterations between communication phases. Our work is inspired by the innovative Scaffnew algorithm, which has considerably advanced the reduction of communication complexity in FL. We introduce FedComLoc (Federated Compressed and Local Training), integrating practical and effective compression into Scaffnew to further enhance communication efficiency. Extensive experiments, using the popular Top-K compressor and quantization, demonstrate its prowess in substantially reducing communication overheads in heterogeneous settings.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 399
Loading