ScdNER: Span-Based Consistency-Aware Document-Level Named Entity Recognition

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 MainEveryoneRevisionsBibTeX
Submission Type: Regular Short Paper
Submission Track: Information Extraction
Submission Track 2: Machine Learning for NLP
Keywords: named entity recognition, span-based, document-level, consistency-aware
Abstract: Document-level NER approaches use global information via word-based key-value memory for accurate and consistent predictions. However, such global information on word level can introduce noise when the same word appears in different token sequences and has different labels. This work proposes a two-stage document-level NER model, ScdNER, for more accurate and consistent predictions via adaptive span-level global feature fusion. In the first stage, ScdNER trains a binary classifier to predict if a token sequence is an entity with a probability. Via a span-based key-value memory, the probabilities are further used to obtain the entity's global features with reduced impact of non-entity sequences. The second stage predicts the entity types using a gate mechanism to balance its local and global information, leading to adaptive global feature fusion. Experiments on benchmark datasets from scientific, biomedical, and general domains show the effectiveness of the proposed methods.
Submission Number: 3448
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview