PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models

18 Sept 2025 (modified: 12 Nov 2025)ICLR 2026 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large language model, post-training quantization, ternary
Abstract: Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and model expressiveness. While existing ultra-low-bit PTQ methods rely on binary approximations or complex compensation mechanisms, they suffer from either limited representational capacity or computational overhead that undermines their efficiency gains. We introduce **PTQ** to**T**rit-**P**lanes (PTQTP), the first ternary-weight PTQ framework that decomposes weight matrices into structured ternary \(\{-1, 0, 1\}\) trit-planes using 2×1.58-bit representation. PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while maintaining superior expressiveness through its novel structured decomposition. Our approach provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment across diverse modern LLMs without architectural modifications; and (3) uniform ternary operations that eliminate the need for mixed-precision or compensation schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model families (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms existing low-bit PTQ methods, achieving 82.4\% mathematical reasoning retention versus 0\% for competing approaches. PTQTP approaches and sometimes surpasses 1.58-bit quantization-aware training performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods. These results establish PTQTP as a practical solution for efficient LLM deployment in resource-constrained environments.
Primary Area: optimization
Submission Number: 10950
Loading