Centroid-Based Efficient Minimum Bayes Risk DecodingDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation.However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations.We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding.Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster.The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 6.9 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT'22 En$\leftrightarrow$Ja, En$\leftrightarrow$De, En$\leftrightarrow$Zh, and WMT'23 En$\leftrightarrow$Ja translation tasks.
Paper Type: short
Research Area: Machine Translation
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Approaches low compute settings-efficiency
Languages Studied: English, Chinese, German, Japanese
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview