SurfelSplat: Learning Efficient and Generalizable Gaussian Surfel Representations for Sparse-View Surface Reconstruction
Keywords: 3D Gaussian Splatting, feed-forward netowrk, surface reconstruction
Abstract: 3D Gaussian Splatting (3DGS) has demonstrated impressive performance in 3D scene reconstruction. Beyond novel view synthesis, it shows great potential for multi-view surface reconstruction. Existing methods employ optimization-based reconstruction pipelines that achieve precise and complete surface extractions. However, these approaches typically require dense input views and high time consumption for per-scene optimization. To address these limitations, we propose SurfaceSplat, a feed-forward framework that generates efficient and generalizable pixel-aligned Gaussian surfel representations from sparse-view images. We observe that conventional feed-forward structures struggle to recover accurate geometric attributes of Gaussian surfels because the spatial frequency of pixel-aligned primitives exceeds Nyquist sampling rates. Therefore, we propose a cross-view feature aggregation module based on the Nyquist sampling theorem. Specifically, we first adapt the geometric forms of Gaussian surfels with spatial sampling rate-guided low-pass filters. We then project the filtered surfels across all input views to obtain cross-view feature correlations. By processing these correlations through a specially designed feature fusion network, we can finally regress Gaussian surfels with precise geometry. Extensive experiments on DTU reconstruction benchmarks demonstrate that our model achieves comparable results with state-of-the-art methods, and predict Gaussian surfels within 1 second, offering a 100× speedup without costly per-scene training.
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 8920
Loading