Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Electronics Design Automation (EDA), Logic Synthesis, Reinforcement Learning, Hardware design, Circuits
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose Retrieval Guided RL for logic synthesis to generalize for diverse hardware. Pre-trained agents, combined with MCTS fails on novel designs. We adjusts agent recommendations using nearest neighbor similarity scores for improved synthesis.
Abstract: Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifications encoded in hardware description languages like Verilog into highly efficient implementations using Boolean logic gates. The process involves a sequential application of logic minimization heuristics (``synthesis recipe"), with their arrangement significantly impacting crucial metrics such as area and delay. Addressing the challenge posed by the broad spectrum of hardware design complexities — from variations of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g., innovative processor instructions) — requires a nuanced 'synthesis recipe' guided by human expertise and intuition. This study conducts a thorough examination of learning and search techniques for logic synthesis, unearthing a surprising revelation: pre-trained agents, when confronted with entirely novel designs, may veer off course, detrimentally affecting the search trajectory. We present ABC-RL, a meticulously tuned $\alpha$ parameter that adeptly adjusts recommendations from pre-trained agents during the search process. Computed based on similarity scores through nearest neighbor retrieval from the training dataset, ABC-RL yields superior synthesis recipes tailored for a wide array of hardware designs. Our findings showcase substantial enhancements in the Quality of Result (QoR) of synthesized circuits, boasting improvements of up to 24.8\% compared to state-of-the-art techniques. Furthermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR) when compared to current state-of-the-art methodologies.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: infrastructure, software libraries, hardware, etc.
Submission Number: 7821
Loading