Learning from Future: A Novel Self-Training Framework for Semantic SegmentationDownload PDF

Published: 31 Oct 2022, Last Modified: 03 Jul 2024NeurIPS 2022 AcceptReaders: Everyone
Keywords: unsupervised domain adaptive semantic segmentation, self-training
Abstract: Self-training has shown great potential in semi-supervised learning. Its core idea is to use the model learned on labeled data to generate pseudo-labels for unlabeled samples, and in turn teach itself. To obtain valid supervision, active attempts typically employ a momentum teacher for pseudo-label prediction yet observe the confirmation bias issue, where the incorrect predictions may provide wrong supervision signals and get accumulated in the training process. The primary cause of such a drawback is that the prevailing self-training framework acts as guiding the current state with previous knowledge because the teacher is updated with the past student only. To alleviate this problem, we propose a novel self-training strategy, which allows the model to learn from the future. Concretely, at each training step, we first virtually optimize the student (i.e., caching the gradients without applying them to the model weights), then update the teacher with the virtual future student, and finally ask the teacher to produce pseudo-labels for the current student as the guidance. In this way, we manage to improve the quality of pseudo-labels and thus boost the performance. We also develop two variants of our future-self-training (FST) framework through peeping at the future both deeply (FST-D) and widely (FST-W). Taking the tasks of unsupervised domain adaptive semantic segmentation and semi-supervised semantic segmentation as the instances, we experimentally demonstrate the effectiveness and superiority of our approach under a wide range of settings. Code is available at https://github.com/usr922/FST.
TL;DR: We propose a novel self-training framework, which helps the student to learn from the future, and achieve state-of-the-art performance on the task of unsupervised domain adaptive semantic segmentation.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/learning-from-future-a-novel-self-training/code)
8 Replies