Reconstruction and Secrecy under Approximate Distance Queries

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Learning Theory, Active Learning, Similarity and Distance Learning, Information Theory, Privacy
TL;DR: We prove tight asymptotic limits for reconstructing a hidden point from noisy distance queries and give a dimension-based criterion for when metric spaces are (non)-pseudo-finite.
Abstract: Consider the task of locating an unknown target point using approximate distance queries: in each round, a reconstructor selects a reference point and receives a noisy version of its distance to the target. This problem arises naturally in various contexts—from localization in GPS and sensor networks to privacy-aware data access—making it relevant from the perspective of both the reconstructor (seeking accurate recovery) and the responder (aiming to limit information disclosure, e.g., for privacy or security reasons). We study this reconstruction game through a learning-theoretic lens, focusing on the rate and limits of the best possible reconstruction error. Our first result provides a tight geometric characterization of the optimal error in terms of the Chebyshev radius, a classical concept from geometry. This characterization applies to all compact metric spaces (in fact, to all totally bounded spaces) and yields explicit formulas for natural subsets of the Euclidean metric. Our second result addresses the asymptotic behavior of reconstruction, distinguishing between pseudo-finite spaces, where the optimal error is attained after finitely many queries, and spaces where the approximation curve exhibits a nontrivial decay. We characterize pseudo-finiteness for convex subsets of Euclidean spaces.
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 17200
Loading