Keywords: Time Series, Context-Aware, Transformer
Abstract: Transformer-based models have achieved significant success in time series forecasting by modeling global dependencies through self-attention mechanisms. However, these models often rely on fixed patch settings with locality constraints, tokenizing time series into spatially connected sub-series. This approach can hinder the capture of semantic relationships and lead to computational inefficiencies, especially when dealing with long sequences with complex temporal dependencies.
In this work, we introduce \textbf{TimeCAT}—a \underline{Time} series \underline{C}ontext-\underline{A}ware \underline{T}ransformer that dynamically groups input sequences into semantically coherent groups, enabling efficient modeling of both local and global dependencies. By appending group and global tokens, TimeCAT facilitates fine-grained information exchange through a novel \emph{Context-Aware Mixing Block}, which utilizes self-attention and MLP mixing operations. This hierarchical approach efficiently models long sequences by processing inputs in structured contexts, reducing computational overhead without sacrificing accuracy.
Experiments on several challenging real-world datasets demonstrate that TimeCAT achieves consistent state-of-the-art performance, significantly improving forecasting accuracy and computational efficiency over existing methods. This advancement enhances the Transformer family with improved performance, generalization ability, and better utilization of sequence information.
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6979
Loading