ContinualFlow: Learning and Unlearning with Neural Flow Matching

Published: 11 Jun 2025, Last Modified: 11 Jun 2025MUGen @ ICML 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generative Models, Flow Matching, Unlearning, Energy-Based Models, Optimal Transport
Abstract: We introduce ContinualFlow, a principled framework for targeted unlearning in generative models via Flow Matching. Our method leverages an energy-based reweighting loss to softly subtract undesired regions of the data distribution without retraining from scratch or requiring direct access to the samples to be unlearned. Instead, it relies on energy-based proxies to guide the unlearning process. We prove that this induces gradients equivalent to Flow Matching toward a soft mass-subtracted target, and validate the framework through experiments on 2D and image domains, supported by interpretable visualizations and quantitative evaluations.
Submission Number: 51
Loading