Understanding the Language Model to Solve the Multi-Step Reasoning Problem from the Perspective of Buffer Mechanism

ACL ARR 2025 May Submission1776 Authors

18 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic multi-step reasoning task to investigate the information propagation mechanisms in Transformer models when solving the task through direct answering and Chain-of-Thought (CoT) reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts it through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model's reasoning ability. This algorithm introduces only 132 trainable parameters, yet leads to significant performance improvements on 7 multi-step reasoning datasets, including PrOntoQA, LogicAsker, and LogicInference. These findings provide new insights into understanding the large language models.
Paper Type: Long
Research Area: Interpretability and Analysis of Models for NLP
Research Area Keywords: knowledge tracing/discovering/inducing
Contribution Types: Model analysis & interpretability
Languages Studied: English
Submission Number: 1776
Loading