SCALE-VLP: Soft-Weighted Contrastive Volumetric Vision–Language Pre-training with Spatial-Knowledge Semantics

ICLR 2026 Conference Submission15804 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Medical Images Analysis, Volumetric representation learning
Abstract: Vision–language models (VLMs) have demonstrated strong cross-modal capabilities, yet most work remains limited to 2D data and assumes binary supervision (i.e., positive vs. negative pairs), overlooking the continuous and structured dependencies present in volumetric data such as CT. Existing approaches often treat volumetric scans as independent 2D slices, compromising spatial coherence and underutilizing rich clinical semantics. We propose SCALE-VLP, a soft-weighted contrastive vision-language pre-training framework that integrates (i) volumetric spatial semantics to preserve anatomical structure and (ii) domain-aware, knowledge-infused semantics (e.g., radiological ontologies) to guide alignment. This yields structurally consistent and semantically grounded representations under limited supervision, demonstrating strong cross-task transferability (retrieval, report generation, and classification), and cross-domain generalizability with consistent gains without further fine-tuning. In particular, compared to the previous state of the art, SCALE-VLP achieves up to 4.3× higher top-1 CT–report retrieval, improves abnormality classification by 10 points, and reaches ROUGE-L 0.44 and BERT-F1 0.89 for report generation. Further, in zero-shot evaluation on an outof- domain external dataset, we observe consistent gains, indicating the cross-task and cross-domain generalization ability of SCALE-VLP.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 15804
Loading