Keywords: Discrete Flow Matching, CTMCs, Cross Entropy, Language Models, Optimal Transport
Abstract: Discrete flow matching, a recent framework for modeling categorical data, has shown competitive performance with autoregressive models. However, unlike continuous flow matching, the rectification strategy cannot be applied due to the stochasticity of discrete paths, necessitating alternative methods to minimize state transitions. We propose a dynamic-optimal-transport-like minimization objective and derive its Kantorovich formulation for discrete flows with convex interpolants, where transport cost depends solely on inter-state similarity and can be optimized via minibatch strategies. In the case of bag-of-words (BoW) sourced flows, we show that such methods can reduce the number of transitions up to 8 times (1024 to 128) to reach the same generative perplexity without compromising diversity. Additionally, path nondeterminism in discrete flows precludes an instantaneous change-of-variables analogue, preventing precise probability estimation available to continuous flows. We therefore propose two upper bounds on perplexity, enabling principled training, evaluation and model comparison. Finally, we introduce Multimask Flow which outperforms masked flows in generative perplexity without sacrificing diversity, particularly when utilizing minibatch Optimal Transport.
Supplementary Material: zip
Primary Area: generative models
Submission Number: 12796
Loading