Do Language Models Understand the Cognitive Tasks Given to Them? Investigations with the N-Back Paradigm

ACL ARR 2025 February Submission3754 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Cognitive tasks originally developed for humans are now increasingly used to study language models. While applying these tasks is often straightforward, interpreting their results can be challenging. In particular, when a model underperforms, it is often unclear whether this results from a limitation in the cognitive ability being tested or a failure to understand the task itself. A recent study argues that GPT 3.5’s declining performance on 2-back and 3-back tasks reflects a working memory capacity limit similar to humans (Gong et al., 2024). By analyzing a range of open-source language models of varying performance levels on these tasks, we show that the poor performance is due at least in part to a limitation in task comprehension and task set maintenance. We challenge the best-performing model with progressively harder versions of the task (up to 10-back) and experiment with alternative prompting strategies, before analyzing model attentions. Our larger aim is to contribute to the ongoing conversation around refining methodologies for the cognitive evaluation of language models.
Paper Type: Long
Research Area: Linguistic theories, Cognitive Modeling and Psycholinguistics
Research Area Keywords: cognitive modeling
Contribution Types: Model analysis & interpretability, Reproduction study
Languages Studied: English
Submission Number: 3754
Loading