Exponential Generalization Bounds with Near-Optimal Rates for $L_q$-Stable AlgorithmsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: $L_q$-stability, Uniform stability, Moments inequality, Exponential generalization bound, Excess risk, Sparsity
TL;DR: We presented a set of sharper and near-optimal exponential generalization bounds for $L_q$-stable learning algorithms
Abstract: The \emph{stability} of learning algorithms to changes in the training sample has been actively studied as a powerful proxy for reasoning about generalization. Recently, exponential generalization and excess risk bounds with near-optimal rates have been obtained under the stringent and distribution-free notion of uniform stability~\citep{bousquet2020sharper,klochkov2021stability}. In the meanwhile, under the notion of $L_q$-stability, which is weaker and distribution dependent, exponential generalization bounds are also available yet so far only with sub-optimal rates. Therefore, a fundamental question we would like to address in this paper is whether it is possible to derive near-optimal exponential generalization bounds for $L_q$-stable learning algorithms. As the core contribution of the present work, we give an affirmative answer to this question by developing strict analogues of the near-optimal generalization and risk bounds of uniformly stable algorithms for $L_q$-stable algorithms. Further, we demonstrate the power of our improved $L_q$-stability and generalization theory by applying it to derive strong sparse excess risk bounds, under mild conditions, for computationally tractable sparsity estimation algorithms such as Iterative Hard Thresholding (IHT).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
17 Replies