Keywords: semantic image manipulation, internal learning, scene-graph driven image editing
Abstract: Image manipulation has attracted a lot of interest due to its wide range of applications. Prior work modifies images either from low-level manipulation, such as image inpainting or through manual edits via paintbrushes and scribbles, or from high-level manipulation, employing deep generative networks to output an image conditioned on high-level semantic input. In this study, we propose Semantic Image Manipulation with Background-guided Internal Learning (SIMBIL), which combines high-level and low-level manipulation. Specifically, users can edit an image at the semantic level by applying changes on the scene graph. Then our model manipulates the image at the pixel level according to the modified scene graph. There are two major advantages of our approach. First, high-level manipulation requires less manual effort from the user compared to manipulating raw image pixels. Second, our low-level internal learning approach is scalable to images of various sizes without reliance on external visual datasets for training. We outperform the state-of-the-art in a quantitative and qualitative evaluation on CLEVR and Visual Genome datasets. Experiments show around 8 points improvement of SSIM (RoI) on CLEVR and around 25% improvement of user evaluation accuracy on Visual Genome, demonstrating the effectiveness of our approach.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
18 Replies
Loading