ThinkTuning: Instilling Cognitive Reflections without Distillation

ACL ARR 2025 May Submission7277 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, recent studies show that solely RL does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback--enough to point the mind in the right direction and then show the solution. Each feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. Particularly, on average, our method shows 3.69% improvement over zero-shot baselines across benchmarks, and on MATH-500 and GPQA-Diamond, it shows 2.08% and 3.99% improvement over the vanilla-GRPO baseline.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: Generation, Language Modeling, Machine Learning for NLP
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 7277
Loading