Few-Class Arena: A Benchmark for Efficient Selection of Vision Models and Dataset Difficulty Measurement

Published: 22 Jan 2025, Last Modified: 15 May 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Few-Class, lightweight, small neural network, benchmark, scaling law, image similarity, convolutional neural network, CNN, transformer
TL;DR: We propose a Few-Class neural network benchmark for model selection, along with a novel SimSS metric for evaluating dataset difficulty, accompanied by in-depth analyses.
Abstract: We propose Few-Class Arena (FCA), as a unified benchmark with focus on testing efficient image classification models for few classes. A wide variety of benchmark datasets with many classes (80-1000) have been created to assist Computer Vision architectural evolution. An increasing number of vision models are evaluated with these many-class datasets. However, real-world applications often involve substantially fewer classes of interest (2-10). This gap between many and few classes makes it difficult to predict performance of the few-class applications using models trained on the available many-class datasets. To date, little has been offered to evaluate models in this Few-Class Regime. We conduct a systematic evaluation of the ResNet family trained on ImageNet subsets from 2 to 1000 classes, and test a wide spectrum of Convolutional Neural Networks and Transformer architectures over ten datasets by using our newly proposed FCA tool. Furthermore, to aid an up-front assessment of dataset difficulty and a more efficient selection of models, we incorporate a difficulty measure as a function of class similarity. FCA offers a new tool for efficient machine learning in the Few-Class Regime, with goals ranging from a new efficient class similarity proposal, to lightweight model architecture design, to a new scaling law. FCA is user-friendly and can be easily extended to new models and datasets, facilitating future research work. Our benchmark is available at https://github.com/bryanbocao/fca.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11666
Loading