Circuit Insights: Towards Interpretability Beyond Activations

ICLR 2026 Conference Submission20821 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: mechanistic interpretability, automated interpretability, explainable AI, transcoders, large language models, circuits
TL;DR: Circuit and weight based automated interpretability of LLM transcoders.
Abstract: The fields of explainable AI and mechanistic interpretability aim to uncover the internal structure of neural networks, with circuit discovery as a central tool for understanding model computations. Existing approaches, however, rely on manual inspection and remain limited to toy tasks. Automated interpretability offers scalability by analyzing isolated features and their activations, but it often misses interactions between features and depends strongly on external LLMs and dataset quality. Transcoders have recently made it possible to separate feature attributions into input-dependent and input-invariant components, providing a foundation for more systematic circuit analysis. Building on this, we propose WeightLens and CircuitLens, two complementary methods that go beyond activation-based analysis. WeightLens interprets features directly from their learned weights, removing the need for explainer models or datasets while matching or exceeding the performance of existing methods on context-independent features. CircuitLens captures how feature activations arise from interactions between components, revealing circuit-level dynamics that activation-only approaches cannot identify. Together, these methods increase interpretability robustness and enhance scalable mechanistic analysis of circuits while maintaining efficiency and quality.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Submission Number: 20821
Loading