Predictor-corrector algorithms for stochastic optimization under gradual distribution shiftDownload PDF

Published: 01 Feb 2023, Last Modified: 25 Nov 2024ICLR 2023 posterReaders: Everyone
Abstract: Time-varying stochastic optimization problems frequently arise in machine learning practice (e.g., gradual domain shift, object tracking, strategic classification). Often, the underlying process that drives the distribution shift is continuous in nature. We exploit this underlying continuity by developing predictor-corrector algorithms for time-varying stochastic optimization that anticipates changes in the underlying data generating process through a predictor-corrector term in the update rule. The key challenge is the estimation of the predictor-corrector term; a naive approach based on sample-average approximation may lead to non-convergence. We develop a general moving-average based method to estimate the predictor-corrector term and provide error bounds for the iterates, both in presence of pure and noisy access to the queries from the relevant derivatives of the loss function. Furthermore, we show (theoretically and empirically in several examples) that our method outperforms non-predictor corrector methods that do not anticipate changes in the data generating process.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/predictor-corrector-algorithms-for-stochastic/code)
10 Replies

Loading