Q-PETR: Quant-aware Position Embedding Transformation for Multi-View 3D Object Detection

Published: 01 Jan 2025, Last Modified: 11 Apr 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Camera-based multi-view 3D detection has emerged as an attractive solution for autonomous driving due to its low cost and broad applicability. However, despite the strong performance of PETR-based methods in 3D perception benchmarks, their direct INT8 quantization for onboard deployment leads to drastic accuracy drops-up to 58.2% in mAP and 36.9% in NDS on the NuScenes dataset. In this work, we propose Q-PETR, a quantization-aware position embedding transformation that re-engineers key components of the PETR framework to reconcile the discrepancy between the dynamic ranges of positional encodings and image features, and to adapt the cross-attention mechanism for low-bit inference. By redesigning the positional encoding module and introducing an adaptive quantization strategy, Q-PETR maintains floating-point performance with a performance degradation of less than 1% under standard 8-bit per-tensor post-training quantization. Moreover, compared to its FP32 counterpart, Q-PETR achieves a two-fold speedup and reduces memory usage by three times, thereby offering a deployment-friendly solution for resource-constrained onboard devices. Extensive experiments across various PETR-series models validate the strong generalization and practical benefits of our approach.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview