Lookbehind Optimizer: k steps back, 1 step forward

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Optimization, sharpness-aware minimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Sharpness-aware minimization (SAM) methods have gained increasing popularity by formulating the problem of minimizing both loss value and loss sharpness as a minimax objective. In this work, we increase the efficiency of the maximization and minimization parts of SAM's objective to achieve a better loss-sharpness trade-off. By taking inspiration from the Lookahead optimizer, which uses multiple descent steps ahead, we propose Lookbehind, which performs multiple ascent steps behind to enhance the maximization step of SAM and find a worst-case perturbation with higher loss. Then, to mitigate the variance in the descent step arising from the gathered gradients across the multiple ascent steps, we employ linear interpolation to refine the minimization step. Lookbehind leads to a myriad of benefits across a variety of tasks. Particularly, we show increased generalization performance, greater robustness against noisy weights, as well as improved learning and less catastrophic forgetting in lifelong learning settings.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1831
Loading