Revisiting Convergence: A Study on Shuffling-Type Gradient Methods

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: shuffling-type gradient methods, convergence analysis, relaxed smoothness assumptions
Abstract: Shuffling-type gradient methods are favored in practice for their simplicity and rapid empirical performance. Despite extensive development of convergence guarantees under various assumptions in recent years, most require the Lipschitz smoothness condition, which is often not met in common machine learning models. We highlight this issue with specific counterexamples. To address this gap, we revisit the convergence rates of shuffling-type gradient methods without assuming Lipschitz smoothness. Using our stepsize strategy, the shuffling-type gradient algorithm not only converges under weaker assumptions but also match the current best-known convergence rates, thereby broadening its applicability. We prove the convergence rates for nonconvex, strongly convex, and non-strongly convex cases, each under both random reshuffling and arbitrary shuffling schemes, under a general bounded variance condition. Numerical experiments further validate the performance of our shuffling-type gradient algorithm, underscoring its practical efficacy.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7876
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview