Knowledge Reasoning Language Model: Unifying Knowledge and Language for Inductive Knowledge Graph Reasoning
Keywords: Inductive Knowledge Graph Reasoning, Large Language Model, Knowledge Graph Foundation Model
TL;DR: We propose an inductive knowledge graph reasoning foundation model that unifies structural knowledge and LLM, with significant zero-shot learning ability on unknown KGs
Abstract: Inductive Knowledge Graph Reasoning (KGR) aims to discover facts in open-domain KGs containing unknown entities and relations, which poses a challenge for KGR models in comprehending uncertain KG components. Existing studies have proposed Knowledge Graph Foundation Models (KGFMs) that learn structural invariances across KGs to handle this uncertainty. Recently, Large Language Models (LLMs) have demonstrated strong capabilities for open-domain knowledge reasoning. As a result, the latest research has focused on LLM-based KGFMs that integrate LLM knowledge with KG context for inductive KGR. However, the intrinsic knowledge of LLMs may be overshadowed by sparse KG context, leading to LLM knowledge distortion, which can cause irreversible damage to model reasoning. Moreover, existing LLM-based KGR methods still struggle to fully constrain generative hallucinations in LLMs, severely limiting the credibility of reasoning results. To address these limitations, we propose a Knowledge Reasoning Language Model (KRLM) that achieves unified coordination between LLM knowledge and KG context throughout the KGR process. Specifically, we design a Knowledge Reasoning Language (KRL) instruction format and a KRL tokenizer to align LLM knowledge with KG representations. Then, we propose a KRL attention layer that coordinates intrinsic LLM knowledge with additional KG context through a dynamic knowledge memory mechanism. Finally, a structure-aware next-entity predictor is proposed, which strictly constrains the reasoning results within a trustworthy knowledge domain. Extensive experimental results on 25 real-world inductive KGR datasets demonstrate the significant superiority of the proposed KRLM in both zero-shot reasoning and fine-tuning scenarios.
Primary Area: learning on graphs and other geometries & topologies
Submission Number: 12291
Loading