Discovering Temporally Compositional Neural Manifolds with Switching Infinite GPFA

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Computational neuroscience, neural data analysis, Bayesian nonparametrics, latent variable modelling;
TL;DR: We propose a fully Bayesian nonparametric extension of GPFA that enables discovery of temporally compositional neural manifolds underlying high-dimensional population neuronal activities.
Abstract: Gaussian Process Factor Analysis (GPFA) is a powerful latent variable model for extracting low-dimensional manifolds underlying population neural activities. However, one limitation of standard GPFA models is that the number of latent factors needs to be pre-specified or selected through heuristic-based processes, and that all factors contribute at all times. We propose the infinite GPFA model, a fully Bayesian non-parametric extension of the classical GPFA by incorporating an Indian Buffet Process (IBP) prior over the factor loading process, such that it is possible to infer a potentially infinite set of latent factors, and the identity of those factors that contribute to neural firings in a compositional manner at \textit{each} time point. Learning and inference in the infinite GPFA model is performed through variational expectation-maximisation, and we additionally propose scalable extensions based on sparse variational Gaussian Process methods. We empirically demonstrate that the infinite GPFA model correctly infers dynamically changing activations of latent factors on a synthetic dataset. By fitting the infinite GPFA model to population activities of hippocampal place cells during spatial tasks with alternating random foraging and spatial memory phases, we identify novel non-trivial and behaviourally meaningful dynamics in the neural encoding process.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5086
Loading