Unsupervised Learning of Causal Relationships from Unstructured DataDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: causality, deep learning, causal representation learning, unsupervised, VAE
TL;DR: We propose a modification to the VAE that learns variables and causal relationships between them in an unsupervised way.
Abstract: Endowing deep neural networks with the ability to reason about cause and effect would be an important step to make them more robust and interpretable. In this work we propose a variational framework that allows deep networks to learn latent variables and their causal relationships from unstructured data, with no supervision, or labeled interventions. Starting from an abstract Structural Equation Model (SEM), we show that maximizing its posterior probability yields a similar construction to a Variational Auto-Encoder (VAE), but with a structured prior coupled by non-linear equations. This prior represents an interpretable SEM with learnable parameters (such as a physical model or dependence structure), which can be fitted to data while simultaneously learning the latent variables. Unfortunately, computing KL-divergences with this non-linear prior is intractable. We show how linearizing arbitrary SEMs via back-propagation produces local non-isotropic Gaussian priors, for which the KL-divergences can be computed efficiently and differentiably. We propose two versions, one for IID data (such as images) which detects related causal variables within a sample, and one for non-IID data (such as video) which detects variables that are also related over time. Our proposal is complementary to causal discovery techniques, which assume given variables, and instead discovers both variables and their causal relationships. We experiment with recovering causal models from images, and learning temporal relations based on the Super Mario Bros videogame.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
17 Replies

Loading