Focal Attention for Long-Range Interactions in Vision TransformersDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 SpotlightReaders: Everyone
Keywords: Focal Attention, Self-Attention, Long-range Interactions, Local-Global Interactions, Vision Transformer, Image Classification, Object Detection
TL;DR: An effective focal attention mechanism for modeling short- and long-range visual dependencies in Vision Transformers
Abstract: Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability to capture local and global visual dependencies through self-attention is the key to its success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks(e.g., object detection). Many recent works have attempted to reduce the cost and improve model performance by applying either coarse-grained global attention or fine-grained local attention. However, both approaches cripple the modeling power of the original self-attention mechanism of multi-layer Transformers, leading to sub-optimal solutions. In this paper, we present focal attention, a new attention mechanism that incorporates both fine-grained local and coarse-grained global interactions. In this new mechanism, each token attends its closest surrounding tokens at the fine granularity and the tokens far away at a coarse granularity and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal attention, we propose a new variant of Vision Transformer models, called Focal Transformers, which achieve superior performance over the state-of-the-art (SoTA) Vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a large size of 89.8M achieve 83.6% and 84.0%Top-1 accuracy, respectively, on ImageNet classification at 224×224. When employed as the backbones, Focal Transformers achieve consistent and substantial improvements over the current SoTA Swin Transformers [44] across 6 different object detection methods. Our largest Focal Transformer yields58.7/59.0boxmAPs and50.9/51.3mask mAPs on COCO mini-val/test-dev, and55.4mIoU onADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: zip
Code: https://github.com/microsoft/Focal-Transformer
12 Replies

Loading