Keywords: interpretability, vision, VLMs, visual reasoning, spatial understanding, temporal understanding, video
TL;DR: We identify linear spatiotemporal ID vectors as the mechanism behind visual reasoning circuits in VLMs, and extend this insight to improve VLMs downstream
Abstract: Spatio-temporal reasoning is a remarkable capability of Vision Language Models (VLMs), but the underlying mechanisms of such abilities remain largely opaque. We postulate that visual/geometrical and textual representations of spatial structure must be combined at some point in VLM computations. We search for such confluence, and ask whether the identified representation can causally explain aspects of input-output model behavior through a linear model. We show empirically that VLMs encode object locations by linearly binding \textit{spatial IDs to textual activations, then perform reasoning via language tokens. Through rigorous causal interventions we demonstrate that these IDs, which are ubiquitous across the model, can systematically mediate model beliefs at intermediate VLM layers. Additionally, we find that spatial IDs serve as a diagnostic tool for identifying limitations and bottlenecks in existing VLMs. We extend our analysis to video VLMs and identify an analogous linear temporal ID mechanism. By characterizing our proposed spatiotemporal ID mechanism, we elucidate a previously underexplored internal reasoning process in VLMs, toward improved interpretability and the principled design of more aligned and capable models.
Supplementary Material: pdf
Primary Area: interpretability and explainable AI
Submission Number: 2474
Loading