Keywords: Reinforcement Learning, Motion Planning, Autonomous Driving
Abstract: Recent advancements in autonomous driving technologies involve the capability to effectively process and learn from extensive real-world driving data. Current imitation learning and offline reinforcement learning methods have shown remarkable promise in autonomous systems, harnessing the power of offline datasets to make informed decisions in open-loop (non-reactive agents) settings. However, learning-based agents face significant challenges when transferring knowledge from open-loop to closed-loop (reactive agents) environment. The performance is significantly impacted by data distribution shift, sample efficiency, the complexity of uncovering hidden world models and physics. To address these issues, we propose Sample-efficient Imitative Multi-token Decision Transformer (SimDT). SimDT introduces multi-token prediction, online imitative learning pipeline and prioritized experience replay to sequence-modelling reinforcement learning. The performance is evaluated through empirical experiments and results exceed popular imitation and reinforcement learning algorithms both in open-loop and closed-loop settings on Waymax benchmark. SimDT exhibits 41\% reduction in collision rate and 18\% improvement in reaching the destination compared with the baseline method.
Supplementary Material: zip
Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9346
Loading