Covariance-corrected Whitening Alleviates Network Degeneration on Imbalanced Classification

16 Sept 2023 (modified: 19 Feb 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: imbalanced classification, neural network, ZCA whitening, sampling
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a covariance-corrected whitening framework to help the deep classification models get rid of degradation dilemma.
Abstract: Class imbalance is a critical issue in image classification that significantly affects the performance of deep recognition models. In this work, We first identify a network degeneration dilemma that hinders the model learning by introducing a high linear dependence among the features inputted into the classifier. To overcome this challenge, we propose a novel framework called Whitening-Net to mitigate the degenerate solutions, in which ZCA whitening is integrated before the linear classifier to normalize and decorrelate the batch samples. However, in scenarios with extreme class imbalance, the batch covariance statistic exhibits significant fluctuations, impeding the convergence of the whitening operation. Therefore, we propose two covariance-corrected modules, the Group-based Relatively Balanced Batch Sampler (GRBS) and the Batch Embedded Training (BET), to get more accurate and stable batch covariance, thereby reinforcing the capability of whitening. Our modules can be trained end-to-end without incurring substantial computational costs. Comprehensive empirical evaluations conducted on benchmark datasets, including CIFAR-LT-10/100, ImageNet-LT, and iNaturalist-LT, validate the effectiveness of our proposed approaches.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 720
Loading