Aggregating Quantitative Relative Judgments: From Social Choice to Ranking Prediction

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Algorithmic Game Theory, Ranking and Preference Learning
TL;DR: We propose new rules for aggregating quantitative relative judgments, study their computational complexity, and evaluate their empirical performance.
Abstract: Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in (computational) social choice. In the QRJA model, agents provide judgments on the relative quality of different candidates, and the goal is to aggregate these judgments across all agents. In this work, our main conceptual contribution is to explore the interplay between QRJA in a social choice context and its application to ranking prediction. We observe that in QRJA, judges do not have to be people with subjective opinions; for example, a race can be viewed as a ``judgment'' on the contestants' relative abilities. This allows us to aggregate results from multiple races to evaluate the contestants' true qualities. At a technical level, we introduce new aggregation rules for QRJA and study their structural and computational properties. We evaluate the proposed methods on data from various real races and show that QRJA-based methods offer effective and interpretable ranking predictions.
Supplementary Material: zip
Primary Area: Algorithmic game theory
Submission Number: 1223
Loading