Federated Node-Level Clustering Network with Cross-Subgraph Link Mending

Published: 01 May 2025, Last Modified: 18 Jun 2025ICML 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Subgraphs of a complete graph are usually distributed across multiple devices and can only be accessed locally because the raw data cannot be directly shared. However, existing node-level federated graph learning suffers from at least one of the following issues: 1) heavily relying on labeled graph samples that are difficult to obtain in real-world applications, and 2) partitioning a complete graph into several subgraphs inevitably causes missing links, leading to sub-optimal sample representations. To solve these issues, we propose a novel $\underline{\text{Fed}}$erated $\underline{\text{N}}$ode-level $\underline{\text{C}}$lustering $\underline{\text{N}}$etwork (FedNCN), which mends the destroyed cross-subgraph links using clustering prior knowledge. Specifically, within each client, we first design an MLP-based projector to implicitly preserve key clustering properties of a subgraph in a denoising learning-like manner, and then upload the resultant clustering signals that are hard to reconstruct for subsequent cross-subgraph links restoration. In the server, we maximize the potential affinity between subgraphs stemming from clustering signals by graph similarity estimation and minimize redundant links via the N-Cut criterion. Moreover, we employ a GNN-based generator to learn consensus prototypes from this mended graph, enabling the MLP-GNN joint-optimized learner to enhance data privacy during data transmission and further promote the local model for better clustering. Extensive experiments demonstrate the superiority of FedNCN.
Lay Summary: Subgraphs of a complete graph are usually distributed across multiple devices and can only be accessed locally because the raw data cannot be directly shared. However, existing node-level federated graph learning suffers from at least one of the following issues: 1) heavily relying on labeled graph samples that are difficult to obtain in real-world applications, and 2) partitioning a complete graph into several subgraphs inevitably causes missing links, leading to sub-optimal sample representations. To solve these issues, we propose a novel $\underline{\text{Fed}}$erated $\underline{\text{N}}$ode-level $\underline{\text{C}}$lustering $\underline{\text{N}}$etwork (FedNCN), which mends the destroyed cross-subgraph links using clustering prior knowledge.
Primary Area: General Machine Learning->Clustering
Keywords: Federated Graph Learning, Muti-view Learning, Deep Clustering
Submission Number: 8505
Loading