Learning to Animate Images from A Few Videos to Portray Delicate Human Actions

27 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image Animation, Video Generation, Few-shot
Abstract: Despite recent progress, video generative models still struggle to animate human actions from static images, particularly when handling uncommon actions whose training data are limited. In this paper, we investigate the task of learning to animate human actions from a small number of videos---16 or fewer---which is highly valuable in real-world applications like video and movie production. Few-shot learning of generalizable motion patterns while ensuring smooth transitions from the initial reference image is exceedingly challenging. We propose FLASH (Few-shot Learning to Animate and Steer Humans), which improves motion generalization by aligning motion features and inter-frame correspondence relations between videos that share the same motion but have different appearances. This approach minimizes overfitting to visual appearances in the limited training data and enhances the generalization of learned motion patterns. Additionally, FLASH extends the decoder with additional layers to compensate lost details in the latent space, fostering smooth transitions from the reference image. Experiments demonstrate that FLASH effectively animates images with unseen human or scene appearances into specified actions while maintaining smooth transitions from the reference image.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9708
Loading