ROC-n-reroll: How verifier imperfection affects test-time scaling

ICLR 2026 Conference Submission17067 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: test-time scaling, inference-time scaling, best of n, theory, data quality
Abstract: Test-time scaling aims to improve language model performance by leveraging additional compute during inference. Many works have empirically studied techniques such as Best-of-N (BoN) and Rejection Sampling (RS) that make use of a verifier to enable test-time scaling. However, to date there is little theoretical understanding of how verifier *imperfection* affects performance — a gap we address in this work. Specifically, we prove that the instance-level accuracy of these methods is precisely characterized by the geometry of the verifier’s ROC curve. Our theory has two important takeaways, confirmed by experiments with Qwen and LLama models on GSM8K and MATH500. First, RS outperforms BoN for fixed compute, while both methods converge to the same accuracy in the infinite-compute limit. Second, it is generally impossible to predict the high-compute performance of either method based on observations in the low-compute regime.
Primary Area: learning theory
Submission Number: 17067
Loading