Tag&Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack
Abstract: Large language models (LLMs) have become essential tools for digital task assistance. Their training relies heavily on the collection of vast amounts of data, which may include copyright-protected or sensitive information. Recent studies on detecting pretraining data in LLMs have primarily focused on sentence- or paragraph-level membership inference attacks (MIAs), usually involving probability analysis of the target model's predicted tokens. However, these methods often exhibit poor accuracy, failing to account for the semantic importance of textual content and word significance. To address these shortcomings, we propose Tag&Tab, a novel approach for detecting data used in LLM pretraining. Our method leverages advanced natural language processing (NLP) techniques to tag keywords in the input text—a process we term Tagging. Then, the LLM is used to obtain probabilities for these keywords and calculate their average log-likelihood to determine input text membership, a process we refer to as Tabbing. Our experiments on four benchmark datasets (BookMIA, MIMIR, PatentMIA, and the Pile) and several open-source LLMs of varying sizes demonstrate an average increase in AUC scores ranging from 5.3% to 17.6% over state-of-the-art methods. Tag&Tab not only sets a new standard for data leakage detection in LLMs, but its outstanding performance is a testament to the importance of words in MIAs on LLMs.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: data ethics, security and privacy, red teaming, pre-training
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Data analysis
Languages Studied: English
Submission Number: 1517
Loading