Keywords: Feature Selection, Neural Networks, Pruning
TL;DR: RelChaNet is a novel feature selection algorithm using neuron pruning and regrowth in the input layer of a neural network.
Abstract: There is an ongoing effort to develop feature selection algorithms to improve interpretability, reduce computational resources, and minimize overfitting in predictive models. Neural networks stand out as architectures on which to build feature selection methods, and recently, neuron pruning and regrowth have emerged from the sparse neural network literature as promising new tools. We introduce RelChaNet, a novel and lightweight supervised feature selection algorithm that uses neuron pruning and regrowth in the input layer of a dense neural network. For neuron pruning, a gradient sum metric measures the relative change induced in a network after a feature enters, while neurons are randomly regrown. We also propose an extension that adapts the size of the input layer at runtime. Extensive experiments on nine different datasets show that our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy by 2\% on the MNIST dataset. Our code is available in the supplementary material.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3484
Loading