Dynamic Correlation Clustering in Sublinear Update Time

Published: 02 May 2024, Last Modified: 25 Jun 2024ICML 2024 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Abstract: We study the classic problem of correlation clustering in dynamic vertex streams. In this setting, vertices are either added or randomly deleted over time, and each vertex pair is connected by a positive or negative edge. The objective is to continuously find a partition which minimizes the sum of positive edges crossing clusters and negative edges within clusters. We present an algorithm that maintains an $O(1)$-approximation with $O(\text{polylog} n)$ amortized update time. Prior to our work Behnezhad et al. in SODA 2023 achieved a $5$-approximation with $O(1)$ expected update time in edge streams which translates in vertex streams to an $O(D)$-update time where $D$ is the maximum possible degree. Finally we complement our theoretical analysis with experiments on real world data.
Submission Number: 4820
Loading