Keywords: label enhancement, test-time adaptation, distribution shift
TL;DR: We propose the progressive adaptation with selective label enhancement framework for test-time adaptation.
Abstract: Test-time adaptation (TTA) aims to adapt a pre-trained model to the target domain using only unlabeled test samples. Most existing TTA approaches rely on definite pseudo-labels, inevitably introducing false labels and failing to capture uncertainty for each test sample. This prevents pseudo-labels from being flexibly refined as the model adapts during training, limiting their potential for performance improvement. To address this, we propose the Progressive Adaptation with Selective Label Enhancement (PASLE) framework. Instead of definite labels, PASLE assigns candidate pseudo-label sets to uncertain ones via selective label enhancement. Specifically, PASLE partitions data into confident/uncertain subsets, assigning one-hot labels to confident samples and candidate sets to uncertain ones. The model progressively trains on certain/uncertain pseudo-labeled data while dynamically refining uncertain pseudo-labels, leveraging increasing target adaptation monitored throughout training. Experiments on various benchmark datasets validate the effectiveness of the proposed approach.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9213
Loading