Keywords: Formal Theorem Proving, Benchmark, Mathematical Reasoning, Formalization, Algebra, Lean
Abstract: Recent advances in large language models (LLMs) have demonstrated impressive capabilities in formal theorem proving, particularly on contest-based mathematical benchmarks like the IMO. However, these contests do not reflect the depth, breadth, and abstraction of modern mathematical research. To bridge this gap, we introduce **FATE**, a new benchmark series in formal algebra designed to chart a course toward advanced mathematical reasoning. We present two new components, FATE-H and FATE-X, each with 100 problems in abstract and commutative algebra. The FATE series spans a difficulty spectrum from undergraduate exercises to problems exceeding PhD qualifying exams. Notably, FATE-X is the first formal benchmark to surpass both PhD-level exam difficulty and the coverage of the Mathlib library. Our evaluations of state-of-the-art LLM provers on this new benchmark reveal a stark performance gap compared to contest math: the best model achieves only 3\% (pass@64) accuracy on FATE-H and 0\% on FATE-X. Our two-stage evaluation reveals that models' natural-language reasoning is notably more accurate than their ability to formalize this reasoning. We systematically classify the common errors that arise during this formalization process. Furthermore, a comparative study shows that a specialized prover can exhibit less effective reflection than general-purpose models, reducing its accuracy at the natural-language stage. We believe FATE provides a robust and challenging benchmark that establishes essential checkpoints on the path toward research-level formal mathematical reasoning.
Primary Area: datasets and benchmarks
Submission Number: 17675
Loading