Solving Partial Differential Equations via Radon Neural Operator

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural Operator, Radon Transform
TL;DR: A discretization-invariant, angle-aware Radon Neural Operator for PDE solving that achieves state-of-the-art performance.
Abstract: Neural operator is considered a popular data-driven alternative to traditional partial differential equation (PDE) solvers. However, most current solutions, whether fulfilling computations in frequency, Laplacian, and wavelet domains, all deviate far from the intrinsic PDE space. While with meticulous network architecture elaborated, the deviation often leads to biased accuracy. To address the issue, we open a new avenue that pioneers leveraging Radon transform to decompose the input space, finalizing a novel Radon neural operator (RNO) to solve PDEs in infinite-dimensional function space. Distinct from previous solutions, we project the input data into the sinogram domain, shrinking the multi-dimensional transformations to a reduced-dimensional counterpart and fitting compactly with the PDE space. Theoretically, we prove that RNO obeys a property of bilipschitz strongly monotonicity under diffeomorphism, providing deeper insights to guarantee the desired accuracy than typical discrete invariance or continuous-discrete equivalence. Within the sinogram domain, we further evidence that different angles contribute unequally to the overall space, thus engineering a reweighting technique to enable more effective PDE solutions. On that basis, a sinogram-domain convolutional layer is crafted, which operates on a fixed $\theta$-grid that is decoupled from the PDE space, further enjoying a natural guarantee of discrete invariance. Extensive experiments demonstrate that RNO sets new state-of-the-art (SOTA) scores across massive standard benchmarks, with superior generalization performance enjoyed. Code is available at <https://github.com/wenbin-lu/Radon-Neural-Operator>.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 4863
Loading