MAIN: Mutual Alignment Is Necessary for instruction tuning

ACL ARR 2025 May Submission3198 Authors

19 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Instruction tuning has empowered large language models (LLMs) to achieve remarkable performance, yet its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. To meet this demand, various methods have been developed to synthesize data at scale. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that the quality of instruction-response pairs is determined not by the individual quality of each component, but by the degree of mutual alignment. To address this, we propose a Mutual Alignment Framework (MAIN) which enforces coherence between instructions and responses through mutual constraints. We demonstrate that MAIN generalizes well across model architectures and sizes, achieving state-of-the-art performance on LLaMA, Mistral, and Qwen models across diverse benchmarks. This work underscores the critical role of instruction-response alignment in enabling generalizable and high-quality instruction tuning for LLMs. All code is available from our anonymous repository.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: Interpretability and Analysis of Models for NLP, Generation
Contribution Types: Model analysis & interpretability, Publicly available software and/or pre-trained models, Data resources
Languages Studied: English
Submission Number: 3198
Loading