Where We Have Arrived in Proving the Emergence of Sparse Interaction Primitives in DNNs

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Explainable AI, Neural networks, Symbolism
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This study proves the emergence of sparse interaction primitives under three common conditions.
Abstract: This study aims to prove the emergence of symbolic concepts (or more precisely, sparse primitive inference patterns) in well-trained deep neural networks (DNNs). Specifically, we prove the following three conditions for the emergence. (i) The high-order derivatives of the network output with respect to the input variables are all zero. (ii) The DNN can be used on occluded samples, and when the input sample is less occluded, the DNN will yield higher confidence. (iii) The confidence of the DNN does not significantly degrade on occluded samples. These conditions are quite common, and we prove that under these conditions, the DNN will only encode a relatively small number of sparse interactions between input variables. Moreover, we can consider such interactions as symbolic primitive inference patterns encoded by a DNN, because we show that inference scores of the DNN on an exponentially large number of randomly masked samples can always be well mimicked by numerical effects of just a few interactions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: visualization or interpretation of learned representations
Submission Number: 3030