FedMAE: Federated Self-Supervised Learning with One-Block Masked Auto-EncoderDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Federated Learning, Self-Supervised Learning, Masked AutoEncoder
Abstract: Latest federated learning (FL) methods started to focus on how to use unlabeled data in clients for training due to users' privacy concerns, high labeling costs, or lack of expertise. However, current Federated Semi-Supervised/Self-Supervised Learning (FSSL) approaches fail to learn large-scale images because of the limited computing resources of local clients. In this paper, we introduce a new framework FedMAE, which stands for Federated Masked AutoEncoder, to address the problem of how to utilize unlabeled large-scale images for FL. Specifically, FedMAE can pre-train one-block Masked AutoEncoder (MAE) using large images in lightweight client devices, and then cascades multiple pre-trained one-block MAEs in the server to build a multi-block ViT backbone for downstream tasks. Theoretical analysis and experimental results on image reconstruction and classification show that our FedMAE achieves superior performance compared to the state-of-the-art FSSL methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
TL;DR: A novel federated self-supervised learning framework with a cascade design
Supplementary Material: zip
10 Replies

Loading