LLM-empowered Dynamic Prompt Routing for Vision-Language Models Tuning under Long-Tailed Distributions

ACL ARR 2025 May Submission2030 Authors

18 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Pre-trained vision-language models (VLMs), such as CLIP, have demonstrated impressive capability in visual tasks, but their fine-tuning often suffers from bias in class-imbalanced scene. Recent works have introduced large language models (LLMs) to enhance VLM fine-tuning with supplementing semantic information. However, they often overlook inherent class imbalance in VLMs' pre-training, which may lead to bias accumulation in downstream tasks. To address this problem, this paper proposes a Multi-dimensional Dynamic Prompt Routing (MDPR) framework. MDPR constructs a comprehensive knowledge base for classes, spanning five visual-semantic dimensions. During fine-tuning, the dynamic routing mechanism aligns global visual classes, retrieves optimal prompts, and balances fine-grained semantics, yielding stable predictions through logits fusion. Extensive experiments on long-tailed benchmarks, including CIFAR-LT, ImageNet-LT, and Places-LT, demonstrate that MDPR achieves comparable results with current SOTA methods. Ablation studies further confirm the effectiveness of our semantic library for tail classes, and show that our dynamic routing incurs minimal computational overhead, making MDPR a flexible and efficient enhancement for VLM fine-tuning under data imbalance.
Paper Type: Long
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Research Area Keywords: cross-modal application; cross-modal information extraction; multimodality;
Contribution Types: Model analysis & interpretability, Publicly available software and/or pre-trained models
Languages Studied: English
Keywords: cross-modal application, cross-modal information extraction, multimodality
Submission Number: 2030
Loading