TELEClass: Taxonomy Enrichment and LLM-Enhanced Hierarchical Text Classification with Minimal Supervision
Hierarchical text classification aims to categorize each document into a set of classes in a label taxonomy, which is a fundamental web text mining task with broad applications such as web content analysis and semantic indexing. Most earlier works focus on fully or semi-supervised methods that require a large amount of human annotated data which is costly and time-consuming to acquire. To alleviate human efforts, in this paper, we work on hierarchical text classification with a minimal amount of supervision: using the sole class name of each node as the only supervision. Recently, large language models (LLM) show competitive performance on various tasks through zero-shot prompting, but this method performs poorly in the hierarchical setting because it is ineffective to include the large and structured label space in a prompt. On the other hand, previous weakly-supervised hierarchical text classification methods only utilize the raw taxonomy skeleton and ignore the rich information hidden in the text corpus that can serve as additional class-indicative features. To tackle the above challenges, we propose TELEClass, Taxonomy Enrichment and LLM-Enhanced weakly-supervised hierarchical text Classification, which combines the general knowledge of LLMs and task-specific features mined from an unlabeled corpus. TELEClass automatically enriches the raw taxonomy with class-indicative features for better label space understanding and utilizes novel LLM-based data annotation and generation methods specifically tailored for the hierarchical setting. Experiments show that TELEClass can significantly outperform previous strong baselines while also achieving comparable performance to zero-shot prompting of LLMs with drastically less inference cost.